Finite Math - Fall 2018 Lecture Notes - 10/18/2018

Homework

• Section 4.2 - 56, 57, 61, 65, 67, 71

Section 4.2 - Systems of Linear Equations and Augmented Matrices

Example 1. Solve the system using an augmented matrix

Solution. Begin by writing the augmented matrix, then just write the equivalences at every step

$$\begin{bmatrix} 2 & -3 & | & 6 \\ 3 & 4 & | & \frac{1}{2} \end{bmatrix} \xrightarrow{\frac{1}{2}R_1 \to R_1} \begin{bmatrix} 1 & -\frac{3}{2} & | & 3 \\ 3 & 4 & | & \frac{1}{2} \end{bmatrix}$$
$$\xrightarrow{-3R_1 + R_2 \to R_2} \begin{bmatrix} 1 & -\frac{3}{2} & | & 3 \\ 0 & \frac{17}{2} & | & -\frac{17}{2} \end{bmatrix}$$
$$\xrightarrow{\frac{2}{17}R_2 \to R_2} \begin{bmatrix} 1 & -\frac{3}{2} & | & 3 \\ 0 & 1 & | & -1 \end{bmatrix}$$
$$\xrightarrow{\frac{3}{2}R_2 + R_1 \to R_1} \begin{bmatrix} 1 & 0 & | & \frac{3}{2} \\ 0 & 1 & | & -1 \end{bmatrix}$$

So $x_1 = \frac{3}{2}$ and $x_2 = -1$.

Example 2. Solve the system using an augmented matrix

Solution. $x = 2, y = -\frac{1}{2}$

Example 3. Solve the system using an augmented matrix

Solution. Begin by writing the augmented matrix, then just write the equivalences at every step

$$\begin{bmatrix} 2 & -1 & | & 4 \\ -6 & 3 & | & -12 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1 \to R_1} \begin{bmatrix} 1 & -\frac{1}{2} & | & 2 \\ -6 & 3 & | & -12 \end{bmatrix}$$
$${}^{6R_1 + R_2 \to R_2} \begin{bmatrix} 1 & -\frac{1}{2} & | & 2 \\ 0 & 0 & | & 0 \end{bmatrix}$$

The bottom row contains all zeros. This means that the system is dependent and there are infinitely many solutions. Looking at the remaining equation

$$x - \frac{1}{2}y = 2$$

we can solve for x and get

$$x = \frac{1}{2}y + 2.$$

Setting y = t for a parameter t, we get $x = \frac{1}{2}t + 2$ and so the solutions to this problem are points $(\frac{1}{2}t + 2, t)$ for any real number t.

Example 4. Solve the system using an augmented matrix

Solution. $x_1 = -2, x_2 = 3$

Example 5. Solve the system using an augmented matrix

Solution. For a parameter t, a solution is $x_1 = 3t - 3, x_2 = t$.

Example 6. Solve the system using an augmented matrix

Solution. No solution

Example 7. Solve the system using an augmented matrix

Solution. x = -1, y = 3

Remark 1. We mentioned above that the final form an augmented matrix with exactly one solution should look like

$$\left[\begin{array}{ccc}1&0&m\\0&1&n\end{array}\right]$$

If the system has infinitely many solutions, it takes the form

$$\left[egin{array}{cccc} 1 & m & n \ 0 & 0 & 0 \end{array}
ight]$$

and if it has no solution, it takes the form

$$\left[\begin{array}{ccc}1 & m & n\\0 & 0 & p\end{array}\right]$$

where $p \neq 0$.

Example 8. Solve the system using an augmented matrix

Solution. x = 2, y = 1

Example 9. Solve the system using an augmented matrix

Solution. No solution

Example 10. Solve the system using an augmented matrix

Solution. x = 1.2, y = 0.3

Example 11. Solve the system using an augmented matrix

Solution. For a parameter t, the solution is x = 2t + 1, y = t